
A Comparison of Fuzzing
Dynamic Analysis and Static
Code Analysis

CCDC-AvMC

Authors
Sean Alexander

Dr. Jonathan Hood

Erica Jones

November 16, 2020

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



1 Abstract

The purpose of this research project is to determine the e�ectiveness
of static code scan analysis compared to fuzzing as a form of dynamic
binary analysis.

Fuzzing is becoming a more relevant approach to dynamic code
analysis for software quality. There are many open source fuzzing
engines available on the internet. The basic premise of fuzzing is to
programmatically contrive and apply semi-random test cases to the
inputs of a piece of software. Any bugs or �aws in the codebase are
detected by the fuzzing engine and recorded. The failure test case can
be used to �nd and�x vulnerable codewhichmayhave not taken into
account the identi�ed parameters from the fuzzing engine.

Static code analysis is a process where the source code itself is
scanned. The static analysis software scans the lines of code and com-
piles a list of potential �aws in a report. The report is then used to
allow the developers to review the �ndings and apply any �xes that
are needed.

The initial expectation is that a properly implemented static code
scan analysis would �nd any bugs that would be caught by a fuzzer.
To test this hypothesis, code bases with known �aws found during
fuzzing are subjected to static code scan analysis. The results found
that amajority of the fuzzing �aws are not directly identi�ed by static
code analysis.

2 Introduction

Fuzzing, as an approach to performing dynamic analysis for software
quality, is becoming a more popular and robust area of study. The
process is sometimes characterized as passing “garbage” through the
software until something breaks. This is actually a speci�c form of

1



fuzzing known as randomblack-box fuzzing, but there are other vari-
ations on this theme[1]. The fuzzing engine starts with a well-formed
seed case and mutates it in a semi-random manner, often using Ar-
ti�cial Intelligence, Machine Learning, and Genetic Algorithms. The
mutated input is then injected into the code being tested. The process
repeats as many times as possible to increase coverage and the odds
of �nding a �aw. While this is an e�ective technique, it can be very
time intensive to �nd failure test cases[1].

Grammar-based fuzzing is an attempt to mitigate the ine�cien-
cies of themore randomapproach of black-black box. There are cases
when an input is expected to be properly formatted. An example of
this would be JSON, XML, or some other standard, structured format.
Some fuzzers, like American Fuzzy Lop (AFL), implement a dictio-
nary thatmaintains the structure of the inputs. This allows for deeper
testing in the binaries by preventing test cases failing a properly val-
idated input[2].

Thepreviouslymentioned approaches both su�er frome�ciency
and limited feedback issues. White-box fuzzing attempts to address
these problems by instrumenting the code so it can be monitored at
runtime. When the initial seed is �rst used the fuzzing engine maps
the execution path through the binary. As the mutated inputs are
passed, the engine can more intelligently map the changes in the in-
puts with new paths. There is an additional hope that with this ap-
proach, it can be determined that the code has been su�ciently tested
so that no further testing would be necessary[3].

The OSS-Fuzz Google service for open source software is an ini-
tiative that continually fuzz tests open source products. Since coming
online in 2016, OSS-Fuzz has found �aws in some open source pack-
ages that are used in defense products. OSS-Fuzz also regularly runs
multiple fuzzing engines with a report comparing results[4][5].

One of the biggest advantages of fuzzing is that there are no false
positive test cases. By the very nature of the analysismethod, the code
is exercised with the test case as failures occur. A �nding indicates
either a failure in the software or a failure in the harness structure.

2



This makes the test cases very valuable for developers to maintain
and improve the code.

The fuzzing approach is not without problems. Do to the semi-
random nature of its operation, it can take months to �nd a problem.
One of the test cases used for the research in this paper requires 9
months of fuzzing and 5 CPU years to identify. It’s also worth men-
tioning that within the �ve-month fuzzing with OSS-Fuzz, 264 vul-
nerable inputs across 47 open source projects have been identi�ed.
In our analysis, we selected a subset of 21 open source projects which
result in 45 unique �ndings from fuzzing. The hardware ran over ten
trillion test inputs per day. Fuzzing works on the probability that if
you push enough inputs into the program, you will �nd bugs[6].

Fuzzing requires the software being fuzzed to be harnessed. A
harness is a program that sits in between the fuzzing engine and the
product being tested. This program acts as an interface to inject the
fuzzed input parameters into the program. The amount of e�ort re-
quired to create these harnesses are proportional to both the com-
plexity of the programand the number of inputs of the programbeing
harnessed. This also introduces an important danger: if the product
is not properly harnessed, for example an input is missed, that the
fuzzing e�ort may be incorrect or incomplete. If the fuzzer doesn’t
return coverage data, there may be no outward signs of insu�cient
test coverage[7].

In contrast, static code analysis (SCA) does not require modi�-
cation or harnessing of the source code. SCA operates on the as-is,
�elded source code. Many SCA engines, such as Fortify and Cover-
ity, also bene�t from building the code and generating control �ow
graphs of parameters to check boundaries and limits through a static,
symbolic execution in addition to their code analysis engines. Check-
marx does not require buildable static code at the cost of potentially
generating more false positive potential �ndings. While fuzzing re-
veals 45 con�rmed vulnerable parameter input combinations, SCA
using Coverity andCheckmarx identi�ed thousands of potentiallyweak
areas of code. The nuance in �nding language here should not be
overlooked: while fuzzing results in unique parameter combinations

3



that could re�ect an issue in the same line of code, SCA results in
unique potential �ndings against lines of code.

The other issue with SCA is the need to vet through the poten-
tial �ndings to triage them for correctness. False positives, or even
heavily mitigated positives must be analyzed against the software’s
speci�c implementation. Fuzzing harnesses can be built to simulate
and more accurately predict the mitigating environment when test-
ing the software.

While the most thorough SCA requires buildable, complete code
bases, harnesses for fuzzing can be written against exposed routines
inside of binaries and libraries. SCA requires access to the source
code that is being scanned while fuzzing requires, at a minimum, ac-
cess to and understanding of the executable binaries being scanned.
These executable binaries must still be harnessed, which is usually
an easier task when access to the source code is available.

3 Procedure

A freshVMwas createdusing the CentOS 8 operating system. VMWare
Tools was installed in order to provide the VM network drivers. Once
internet access was achieved, the OS was updated. The full “Develop-
ment Tools” repository was installed on the VM. Some of the projects
in the OSS-Fuzz require clang, which required enabling the extended
tools options.

The OSS-Fuzz git repository was cloned onto the VM. This project
included 24 open source projects, ofwhich, the 21 open source projects
under consideration in this research were included. There are also
included scripts to auto-build and run a local fuzzer engine for each
project. These scripts were modi�ed to not execute the fuzzing por-
tion in order to optimize the build process. The modi�ed scripts built
the 21projects under consideration. By viewing the logs, someprojects
required the installation of dependencies. One project could not be

4



built in an updated CentOS 8 environment and is excluded from con-
sideration in this research.

The Coverity analysis tool was installed on themachine. Coverity
was then con�gured for gcc, clang, and go. There was an attempt to
modify the script to automate the process of running coverity on the
projects, but there were issues that made it more e�cient to run each
Coverity analysis manually.

In each project, the following steps were done. A directory was
created called “coverity”, and the emit-db intermediate directory
from Coverity was obtained. The build script for the project was ex-
ecuted causing the codebase with the known �aw to be downloaded
and built. Once complete, themake commandwas calledwith “clean”
to remove the binaries. The Coverity build tool was called with the
parameters “make” and the path of the project intermediate direc-
tory. The build process populated the intermediate directorywith the
coverity analysis data.

While the Coverity process was being run, a VMwith Checkmarx
was runonanothermachine in parallel. The repositorieswere copied
to the Checkmarx machine. The individual code bases were zipped
and a Checkmarx scan was run on all of them. The results were put
into CSV �les for later comparison to the fuzzer failure information.

When the Coverity builds were complete, an analysis machine
was started and the intermediate directories made available through
a shared network directory. The intermediate directories were pro-
cessed one at a time. Once all the analysis was run, they were com-
mitted to the Coverity platform so the results could be viewed and
compared.

The projects were put into a workbook with crash information
that was provided by the fuzzing repositories. In some cases, a full
crash stack had been provided with �le locations. In others, there
were links to the bug information that were used to build a partial
vulnerable parameter set.

The SCA and fuzzing results were combined and compared di-

5



rectly. If the static analysis �nding matched the line and cause of the
fuzzing-identi�ed failure, it was listed as a direct �nding. If there
was no direct �nding, a deeper search was done to see if the static
�ndings could have related to the crash data. There were several in-
stances where it was reasonable that the two could be related and
these comparisons were labeled “possible �nding”. If there were in-
stances were the �ndings intersected the static but any causality be-
tween the two was questionable, the comparison was labeled “Un-
likely Finding”. The rest were labeled as “No direct �nding”. While
some �ndings that fell into the last category did often intersect with
the crash stack, the likelihood of being able to link themwas improb-
able.

6



4 Results

Un-vetted Static Analysis High Risk Findings
Code Project Coverity Checkmarx
boringssl 184 977
c-ares 7 862

freetype2 42 140
guetzli 10 62
harfbuzz 23 256
json 17 0
lcms 54 0

libarchive 91 1540
libjpeg-turbo 47 197

libpng 19 554
libssh 53 495
libxml2 343 214

openssl-1.0.1f 475 3369
openssl-1.0.2d 465 3348
openssl-1.1.0c 384 3189
openthread 23 570

pcre2 16 117
proj4 30 499
re2 8 173
sqlite 66 11
vorbis 18 260
wo�2 8 17

wpantund 18 230

table 1

7



Detection of fuzzer �aws by Static Code Analysis
D=Direct Finding
P=Possible Finding
U=Unlikely Finding
N=No Direct Finding

Code Project Known Flaw Coverity Checkmarx
boringssl AddressSanitizer: heap-use-after-free N N
c-ares AddressSanitizer: heap-bu�er-over�ow N N

freetype2 integer-over�ow P N
assertion fail P N

guetzli assertion fail N P
harfbuzz AddressSanitizer: heap-bu�er-over�ow N P
json assertion fail N N
lcms AddressSanitizer: heap-bu�er-over�ow N N

libarchive AddressSanitizer: heap-bu�er-over�ow N N
libpng potential malloc failure P P
libssh memory leak N N
libxml2 AddressSanitizer: heap-bu�er-over�ow N N

memory leak N N
AddressSanitizer: heap-bu�er-over�ow P N

openssl-1.0.1f AddressSanitizer: heap-bu�er-over�ow D D
memory leak N N

openssl-1.0.2d assertion fail N N
openssl-1.1.0c heap bu�er over�ow N N

AddressSanitizer: heap-bu�er-over�ow N N
malloc leak P U

table 2

8



Detection of fuzzer �aws by Static Code Analysis (cont)
openthread Heap-bu�er-over�ow N N

Stack-bu�er-over�ow P N
Stack-bu�er-over�ow N N
Stack-bu�er-over�ow P N
Stack-bu�er-over�ow N N
Stack-bu�er-over�ow P N
Stack-bu�er-over�ow N N
Stack-bu�er-over�ow N N
Stack-bu�er-over�ow N N
Stack-bu�er-over�ow N N
Stack-bu�er-over�ow N N
Null-dereference P N

pcre2 AddressSanitizer: heap-bu�er-over�ow U N
AddressSanitizer: heap-bu�er-over�ow U N

proj4 LeakSanitizer: detected memory leaks N D
LeakSanitizer: detected memory leaks N D

re2 DFA out of memory P N
AddressSanitizer: heap-bu�er-over�ow P N

sqlite Heap-use-after-free N N
Heap-use-after-free D N

Direct-leak N D
vorbis AddressSanitizer: heap-bu�er-over�ow N N

AddressSanitizer: heap-bu�er-over�ow N N
wo�2 AddressSanitizer: heap-bu�er-over�ow P N

libFuzzer: out-of-memory P N

table 2(cont)

9



Coverity

73%

4%

23%
4% No direct �nding

Direct �nding
Possible
Unlikely

CheckMarx

84%

8%

6%2%
No direct �nding
Direct �nding
Possible
Unlikely

10



5 Conclusion and Summary

Of the 45 failure cases found through fuzzing, neither static code anal-
ysis tool foundmore than ten percent of the failures directly. Inmany
cases, there are �ndings that occur within the failure stack of the
problem, but analysis suggests the �aws are unrelated [see table 2].

Across the projects, there are a number of high-risk �ndings. In
a product environment, these �ndings would have to be vetted by an
analyst to verify real �ndings from false positives [see table 1].

A majority of the issues that are not caught primarily involve
over�ows on the heap which are dynamically created and destroyed
at run-time. It is worth noting that some of the �aws found through
fuzzing are the result of assertion failures. This indicates that the fail-
ure case is known when the product was developed, and places the
responsibility for proper error handling on the caller [see table 2].

Some of the fuzzing results are omitted from the �nal results. In
one case the project llvm-libcxxabi couldn’t be built due to con-
�icting dependencieswith CentOS 8updates. wpantund andlibjpeg-turbo
are coverage tests used to gauge the speedwithwhich a given fuzzing
engine can reach a certain line of code.

The purpose of this experiment is to discern if SCA can eliminate
the need for fuzzing analysis. The results demonstrate that there are
�aws in the software that are not discovered by the SCA tools em-
ployed. While the SCA re�ects a higher quantity of potential �ndings,
the overlap between SCA and fuzzing is between 5-30%. The results
suggest that a two-prong approach of using both methods provides
a more comprehensive software assurance analysis. The hypothesis
that properly implemented SCA would �nd the issues identi�ed by
fuzzing libraries is disproved.

11



References
1. GODEFROID, P. Fuzzing:Hack, Art, and Science.COMMUNICATIONS

OF THE ACM.
2. Pham, V.-T., Boehme, M., Santosa, A. E., Caciulescu, A. R. & Roy-

choudhury, A. Smart Greybox Fuzzing. IEEE Transactions on Soft-
ware Engineering, 1–1 (2019).

3. Patrice Godefroid Adam Kie ˙zun, M. Y. L. Grammar-based White-
box Fuzzing. PLDI ’08: Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation.

4. ANewChapter forOSS-Fuzz in ().https://security.googleblog.
com/2018/11/a-new-chapter-for-oss-fuzz.html.

5. 04-03-2020 report https://www.fuzzbench.com/reports/
2020-03-04/index.html.

6. OSS-Fuzz: Fivemonths later, and rewarding projectsMay2017.https:
//security.googleblog.com/2017/05/oss-fuzz-five-
months-later-and.html.

7. Our guide to fuzzing https://www.f-secure.com/us-en/
consulting/our-thinking/15-minute-guide-to-fuzzing.

12

https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://www.fuzzbench.com/reports/2020-03-04/index.html
https://www.fuzzbench.com/reports/2020-03-04/index.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://www.f-secure.com/us-en/consulting/our-thinking/15-minute-guide-to-fuzzing
https://www.f-secure.com/us-en/consulting/our-thinking/15-minute-guide-to-fuzzing

	Abstract
	Introduction
	Procedure
	Results
	Conclusion and Summary

